A B C D E F G H I J K L M N O P Q R S T U V W X Z
All Classes All Packages
All Classes All Packages
All Classes All Packages
D
- data - Variable in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
- data - Variable in class io.bhagat.math.linearalgebra.Matrix
-
a 2D double array storing to internal data of the Matrix
- data - Variable in class io.bhagat.math.linearalgebra.Vector
-
the array storing the data of the vector
- DataPoint - Class in io.bhagat.ai.supervised
- DataPoint(double[], double[]) - Constructor for class io.bhagat.ai.supervised.DataPoint
-
creates a data points using inputs and a target
- DataSet - Class in io.bhagat.ai.supervised
-
A class to hold multiple data points
- DataSet() - Constructor for class io.bhagat.ai.supervised.DataSet
-
creates a data set
- DEFAULT_DX - Static variable in class io.bhagat.math.calculus.Calculus
-
Default infinitely small number
- DEFAULT_ITERATIONS - Static variable in class io.bhagat.ai.unsupervised.KMeans
- DEFAULT_NUMBER_OF_ITERATIONS - Static variable in class io.bhagat.math.calculus.Calculus
-
Default number of iterations for integrals
- defaultActivationFunction - Static variable in class io.bhagat.ai.supervised.NeuralNetwork
-
the default activation function the sigmoid function takes any numbers and puts it between 0 and 1
- defaultActivationFunction - Static variable in class io.bhagat.ai.supervised.Perceptron
-
default activation function to use if something is positive or negative to 1 or 0
- defaultBiasLearningRateFactor - Static variable in class io.bhagat.ai.supervised.Perceptron
-
default bias learning rate factor
- defaultLearningRate - Static variable in class io.bhagat.ai.supervised.Perceptron
-
default learning rate
- defaultLearningRateFactor - Static variable in class io.bhagat.ai.supervised.Perceptron
-
default learning rate factor
- defaultN - Static variable in class io.bhagat.ai.supervised.Perceptron
-
default number of inputs
- defaultThreshold - Variable in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
-
the default threshold to decide whether a component has enough variance
- derivative(Function<Double, Double>) - Static method in class io.bhagat.math.calculus.Calculus
-
Takes the derivative of a function using a default dx
- derivative(Function<Double, Double>, double) - Static method in class io.bhagat.math.calculus.Calculus
-
Takes the derivative of a double function using a non default dx
- derivative(Function<Float, Float>, float) - Static method in class io.bhagat.math.calculus.Calculus
-
Takes the derivative of a float function using a non default dx
- deserialize(String) - Static method in class io.bhagat.util.SerializableUtil
-
retrieves a serialized object from the disk
- determinant() - Method in class io.bhagat.math.linearalgebra.Matrix
-
uses the static method to compute the determinant of the matrix
- determinant() - Method in class io.bhagat.math.linearalgebra.Vector.CrossProductMatrix
- determinant(Matrix) - Static method in class io.bhagat.math.linearalgebra.Matrix
- dimensionReduction() - Method in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
-
Reduces the dimensions of the data matrix so only the important dimensions remain
- dimensionReduction(double) - Method in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
-
Reduces the dimensions of the data matrix so only the important dimensions remain
- dimensionReduction(int) - Method in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
-
Reduces the dimensions of the data matrix into D dimensions
- dimensionReduction(Matrix) - Method in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
-
Reduces the dimensions of the data matrix so only the important dimensions remain
- dimensionReduction(Matrix, double) - Method in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
-
Reduces the dimensions of the data matrix so only the important dimensions remain
- dimensionReduction(Matrix, int) - Method in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
-
Reduces the dimensions of the data matrix into D dimensions
- dimensionReduction(Vector) - Method in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
-
Reduces the dimensions of the data point into D dimensions
- dimensionReduction(Vector, double) - Method in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
-
Reduces the dimensions of the data point into D dimensions
- dimensionReduction(Vector, int) - Method in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
-
Reduces the dimensions of the data point into D dimensions
- Distribution<E> - Class in io.bhagat.math.statistics
-
A class for distributions
- Distribution() - Constructor for class io.bhagat.math.statistics.Distribution
- Distribution.InvalidInputException - Exception in io.bhagat.math.statistics
-
An exception for invalid input for the distribution
- distributionFunction - Variable in class io.bhagat.math.statistics.NormalDistribution
-
the function for the normal distribution
- divide(double) - Method in class io.bhagat.math.linearalgebra.Matrix
-
performs the scalar division on the matrix
- divide(double) - Method in class io.bhagat.math.linearalgebra.Vector
-
Performs scalar division (element wise) on the Vector
- divide(double) - Method in class io.bhagat.math.statistics.QuantitativeDataList
-
divides a number to each number in the list
- divide(double, Vector) - Static method in class io.bhagat.math.linearalgebra.Vector
-
static divide scalar function
- divide(Matrix) - Method in class io.bhagat.math.linearalgebra.Matrix
-
performs element wise division
- divide(Vector) - Method in class io.bhagat.math.linearalgebra.Vector
-
Element-wise Vector division
- divide(Vector, double) - Static method in class io.bhagat.math.linearalgebra.Vector
-
static divide scalar function
- dot(Vector) - Method in class io.bhagat.math.linearalgebra.Vector
-
performs the dot product with another vector
- dot(Vector, Vector) - Static method in class io.bhagat.math.linearalgebra.Vector
-
static dot product function that calls the dot function of a vector
- DoubleDistribution - Class in io.bhagat.math.statistics
-
A class for distributions
- DoubleDistribution() - Constructor for class io.bhagat.math.statistics.DoubleDistribution
- DoubleDistribution.DoubleSimulation - Class in io.bhagat.math.statistics
-
The same as a distribution simulation except it returns a QualititativeDataList rather than an array list from run(iterations)
- DoubleSimulation() - Constructor for class io.bhagat.math.statistics.DoubleDistribution.DoubleSimulation
All Classes All Packages