A B C D E F G H I J K L M N O P Q R S T U V W X Z 
All Classes All Packages

D

data - Variable in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
 
data - Variable in class io.bhagat.math.linearalgebra.Matrix
a 2D double array storing to internal data of the Matrix
data - Variable in class io.bhagat.math.linearalgebra.Vector
the array storing the data of the vector
DataPoint - Class in io.bhagat.ai.supervised
 
DataPoint(double[], double[]) - Constructor for class io.bhagat.ai.supervised.DataPoint
creates a data points using inputs and a target
DataSet - Class in io.bhagat.ai.supervised
A class to hold multiple data points
DataSet() - Constructor for class io.bhagat.ai.supervised.DataSet
creates a data set
DEFAULT_DX - Static variable in class io.bhagat.math.calculus.Calculus
Default infinitely small number
DEFAULT_ITERATIONS - Static variable in class io.bhagat.ai.unsupervised.KMeans
 
DEFAULT_NUMBER_OF_ITERATIONS - Static variable in class io.bhagat.math.calculus.Calculus
Default number of iterations for integrals
defaultActivationFunction - Static variable in class io.bhagat.ai.supervised.NeuralNetwork
the default activation function the sigmoid function takes any numbers and puts it between 0 and 1
defaultActivationFunction - Static variable in class io.bhagat.ai.supervised.Perceptron
default activation function to use if something is positive or negative to 1 or 0
defaultBiasLearningRateFactor - Static variable in class io.bhagat.ai.supervised.Perceptron
default bias learning rate factor
defaultLearningRate - Static variable in class io.bhagat.ai.supervised.Perceptron
default learning rate
defaultLearningRateFactor - Static variable in class io.bhagat.ai.supervised.Perceptron
default learning rate factor
defaultN - Static variable in class io.bhagat.ai.supervised.Perceptron
default number of inputs
defaultThreshold - Variable in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
the default threshold to decide whether a component has enough variance
derivative(Function<Double, Double>) - Static method in class io.bhagat.math.calculus.Calculus
Takes the derivative of a function using a default dx
derivative(Function<Double, Double>, double) - Static method in class io.bhagat.math.calculus.Calculus
Takes the derivative of a double function using a non default dx
derivative(Function<Float, Float>, float) - Static method in class io.bhagat.math.calculus.Calculus
Takes the derivative of a float function using a non default dx
deserialize(String) - Static method in class io.bhagat.util.SerializableUtil
retrieves a serialized object from the disk
determinant() - Method in class io.bhagat.math.linearalgebra.Matrix
uses the static method to compute the determinant of the matrix
determinant() - Method in class io.bhagat.math.linearalgebra.Vector.CrossProductMatrix
 
determinant(Matrix) - Static method in class io.bhagat.math.linearalgebra.Matrix
 
dimensionReduction() - Method in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
Reduces the dimensions of the data matrix so only the important dimensions remain
dimensionReduction(double) - Method in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
Reduces the dimensions of the data matrix so only the important dimensions remain
dimensionReduction(int) - Method in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
Reduces the dimensions of the data matrix into D dimensions
dimensionReduction(Matrix) - Method in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
Reduces the dimensions of the data matrix so only the important dimensions remain
dimensionReduction(Matrix, double) - Method in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
Reduces the dimensions of the data matrix so only the important dimensions remain
dimensionReduction(Matrix, int) - Method in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
Reduces the dimensions of the data matrix into D dimensions
dimensionReduction(Vector) - Method in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
Reduces the dimensions of the data point into D dimensions
dimensionReduction(Vector, double) - Method in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
Reduces the dimensions of the data point into D dimensions
dimensionReduction(Vector, int) - Method in class io.bhagat.ai.unsupervised.PrincipalComponentAnalysis
Reduces the dimensions of the data point into D dimensions
Distribution<E> - Class in io.bhagat.math.statistics
A class for distributions
Distribution() - Constructor for class io.bhagat.math.statistics.Distribution
 
Distribution.InvalidInputException - Exception in io.bhagat.math.statistics
An exception for invalid input for the distribution
distributionFunction - Variable in class io.bhagat.math.statistics.NormalDistribution
the function for the normal distribution
divide(double) - Method in class io.bhagat.math.linearalgebra.Matrix
performs the scalar division on the matrix
divide(double) - Method in class io.bhagat.math.linearalgebra.Vector
Performs scalar division (element wise) on the Vector
divide(double) - Method in class io.bhagat.math.statistics.QuantitativeDataList
divides a number to each number in the list
divide(double, Vector) - Static method in class io.bhagat.math.linearalgebra.Vector
static divide scalar function
divide(Matrix) - Method in class io.bhagat.math.linearalgebra.Matrix
performs element wise division
divide(Vector) - Method in class io.bhagat.math.linearalgebra.Vector
Element-wise Vector division
divide(Vector, double) - Static method in class io.bhagat.math.linearalgebra.Vector
static divide scalar function
dot(Vector) - Method in class io.bhagat.math.linearalgebra.Vector
performs the dot product with another vector
dot(Vector, Vector) - Static method in class io.bhagat.math.linearalgebra.Vector
static dot product function that calls the dot function of a vector
DoubleDistribution - Class in io.bhagat.math.statistics
A class for distributions
DoubleDistribution() - Constructor for class io.bhagat.math.statistics.DoubleDistribution
 
DoubleDistribution.DoubleSimulation - Class in io.bhagat.math.statistics
The same as a distribution simulation except it returns a QualititativeDataList rather than an array list from run(iterations)
DoubleSimulation() - Constructor for class io.bhagat.math.statistics.DoubleDistribution.DoubleSimulation
 
A B C D E F G H I J K L M N O P Q R S T U V W X Z 
All Classes All Packages